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Abstract 
 

The resolution of precipitation fields forecasted by atmospheric models typically ranges 
from about 102 to 104 Km2 in space and from few hours to few days in time, while the
resolution of interest when modelling runoff in complex orography areas is of the order
of a square kilometer in space and a few minutes in time. Many studies have 
investigated the scale properties of precipitation fields; these show the presence of a
scale-invariant organization that seems to reflect the physical properties of the
processes. Scale invariance helps to develop efficient rainfall downscaling schemes to 
be used in a coupled atmospheric-hydrologic approach. Multifractal models allow to 
capture the moments of the observed rainfall signals throughout different scales and are
expected to be successfully applied in rainfall disaggregation tools. The temporal 
persistence of the process suggests the use of models that preserve multifractal
properties observed in real rainfall both in time and in space. In the present work are
presented: 
i) the case-study of a space-time (3D) multifractal analysis for rainfall fields derived by 
a terrain based radar (FOSSALON); 
ii) the comparison with results of a similar analysis carried out in space (2D) for
different sensor derived rainfall fields  (SSM/I). 
 



1 Introduction 
One of the most important problems concerning any real time flood 

prediction is the lack of knowledge of the small-scale statistical properties of 
the convective rainfall fields. 

In many tropical and mid latitude areas, characterized by complex orography 
drained by small size river catchments, rainfall events producing heavy floods 
show high convective components. The small size of the river catchments 
reduces the characteristic response time to heavy rainfall to few hours. 
Therefore any reliable real time flood prediction tool aimed at early warning to 
the population has to use rainfall predictions coupled to rainfall-runoff models. 

The operational experience has highlighted that a gap exists between the 
scales solved by meteorological and hydrological models. Hydrologists attempt 
to fill this gap using statistical disaggregation models, able to simulate rainfall 
fields at scales smaller than those of the meteorological prediction.  

The small number of reliable datasets makes it difficult to acknowledge the 
capacity of disaggregation models in reproducing “observed” rainfall fields 
statistics. 

The remote observations based on ground radar and meteorological satellite, 
such as DMSP (Defence Meteorological Satellite Program) and TRMM 
(Tropical Rainfall Measuring Mission), give an important contribution to the 
building of these datasets, providing multiscale observations of the convective 
rainfall fields. Therefore it is important to investigate how radar derived rainfall 
fields can be used in disaggregation models. 

The data provided by a ground based radar and the SSM/I sensors are used 
here to investigate the multifractal properties [Feder, 1988; Falconer, 1990] of 
the convective rainfall fields.  

The multifractal properties of the rainfall fields obtained from the analysis 
will be used to find the parameters of a multifractal downscaling model 
[Deidda, et al., 1999; Deidda 1999a, 1999b]. 

These analyses represent an important improvement of the real time flood 
prediction, allowing better evaluations of the response of river basins to extreme 
rainfall events. 

This paper is organized as follows: in section 2 we discuss the space-time 
multifractal modeling of rainfall fields; Section 3 is devoted to space and space-
time multifractal analysis of SSM/I and ground based radar rainfall-fields of the 
Friuli event of October 1998. In section 4 the conclusions of this work are 
drawn. 

 
2 Multifractal modeling of rainfall fields 

In this section it is shown how to construct synthetic fields of space-time 
rainfall with prescribed multifractal behaviour using the STRAIN (Space-Time 
RAINfall) model [Deidda, 1999b] 

The model is a generalization of the multidimensional model by Deidda et 
al. [1999] and so includes generalized scaling and scale covariance by means of 



an infinitely divisible log-Poisson distribution [Dubrulle, 1994; She and 
Leveque, 1994]. 

The model assumes that rainfall fields are isotropic and statistically 
homogeneous in space and that self-similarity holds, so that we can rescale the 
time dimension by the advection velocity U (Taylor hypothesis [Taylor, 38]) to 
obtain a fully homogeneous and isotropic process in the space-time domain. 

A synthetic space-time rainfall intensity field i(x,y,t) with (x,y) ∈ [0,L]2 and 
t ∈ [0,T], where T=L/U, is obtained as a wavelet expansion with coefficients 
extracted by a stochastic cascade: 
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where yj,kx,ky,kt(x,y,t) is a wavelet on level j with position kx,ky,kt and 
aj,kx,ky,kt is the coefficient extracted from the stochastic cascade. 

The three-dimensional wavelet y(x,y,t) is defined as a product of three one-
dimensional basis wavelets Y(z), positive definite and integrable for z∈[0, L] 
and zero elsewhere: 
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The normalisation in modulus of the basis function ψ(z) assures the 

normalisation of each wavelet y(x,y,t), defined by the above equation. The 
following Gaussian distribution is an example of the basis wavelet used: 
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where m=L/2, s=0.15L and c≈1/( πσ 2 ) is a normalization constant. 
 

 
Figure 2.1: Gaussian basis function Y(z), defined by equation (3) with s =0.15 
and onedimensional wavelets yj,k(x) for the first two levels j=1,2, obtained by 
stretching and shifting the same basis function Y(z). The integral of each 
wavelet is normalized to unity. 

 



The random cascade is constructed using a multiplicative process; each son 
aj,kx,ky,kt at the j-th level is obtained by multiplying the corresponding father at 
level j-1 by an independent and identically distributed random variable h, called 
generator: 
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The structure functions Sq(l) of signals (1) can be defined as: 
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where <…> is the spatial average. 
After some computations it can be shown that structure functions obey 

anomalous scaling Sq(l) ∼ lz(q) with multifractal exponents z(q), depending 
only on the ensemble averages of the moments of the generator η: 
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The choice of the probability distribution of the random generator h 

characterises the multifractal behaviour of the synthetic signals. In this work the 
log-Poisson distribution was used: 
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where A and β are constant parameters, while y is a Poisson distributed 
random variable with average c: E[y]=c.  

The expected scaling of signals can be finally evaluated: 
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where the multifractal exponent z(q)depends only on the parameters c and β. 
Estimates of the model parameters c and b can be obtained by solving the 

following minimization problem: 
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where )(ˆ qζ  are the sample multifractal exponents, )(qζ  is the theoretical 
expectation, 1)( −= qqσ  is a weight that accounts for the estimation error, i.e. 
the standard deviation of )(qζ . 



3 Multifractal analysis of rainfall fields 
The data used for the multifractal analysis in space and space-time come 

from two different sensors: 
• the C-banded polarimetric doppler radar FOSSALON of Grado (GO), sited 

in the north east of Italy at 45.73 latitude and 13.5 longitude that sweeps a 
circular area of diameter 245 Km with a resolution of about .125 Km every 
ten minutes; 

• the Special Sensor Microwave/Imager (SSM/I) aboard the Defence 
Meteorological Satellite Program (DMSP) Block 5D-2 Spacecraft F8 that  
has a swath width of 1394 Km and an EFOV on earth surface at different 
frequency bands that go from 70 to 13 Km. The SSM/I sweeps the study 
area on average every 12 hours. 

The rainfall fields from the FOSSALON radar images were estimated by the 
Weather Radar Operation Center of  the “Ente Regionale per lo Sviluppo 
Agricolo della Regione Friuli”, Italy, while the SSM/I derived rainfall field was 
estimated by of the Istituto di Fisica dell’Atmosfera, CNR Roma Italy, and has a 
resolution of about 25 Km. 

 
In space the multifractal analysis was performed on the following data set: 
• 41 radar images given at 30 minutes (the rainfall intensity is average on 

10 minutes) going from the 19:50 GMT of the 6th of October 1998 to 
the 15:50 GMT of the 7th of October 1998. 

• 2 SSM/I images corresponding to the same hour 5:33 GMT of the 7th of 
October 1998, on two different spatial domains: one - extracted SSM/I 
field – has size of about 800 km and is centered on the Trentino region, 
the second - total SSM/I field – has size of about 1600 km. The rainfall 
intensity was given about every 5 minutes The radar image of hour 5:28 
GMT corresponds to the SSM/I passage. 

 
In space-time the multifractal analysis was performed on the data set of 112 

radar images given at 10 minutes intervals going from the 19:49 GMT of the 
6th of October 1998 to the 14:18 GMT of the 7th of October 1998. 

The event lasted from the 5th to the 8th of October with the highest intensity 
rainfalls between the 6th and the 7th. The total rainfall measured at Caporetto 
and Udine has been of about 400 mm in 48 hours. The event caused over-bank 
flow for the subcatchments of the Latisone (300 Km2) and full bank flow in 
most of the sub-basins of the area, such as Tagliamento and Piave. 

 



 
Figure 3.1: Meteosat infrared image. Typical cloud structure observed during 
the extreme event of October 1998. A wide area, dark blue and red, shows 
lower cloud top radiance temperatures and therefore high probability of 
convective activity. The convective area has a spatial domain of about 1000 km. 

 

3.1 SPACE ANALYSIS 
Structure functions, in space, were computed on radar and SSM/I rainfall 

fields: the spatial radar scale ranges from 0.5 km to 128 km, while the SSM/I 
field scale ranges from 25 km to 800 km. In Figure 3.2 and Figure 3.3 the 
structure functions for the first six moments of the fields from the two different 
sensors are plotted in the log-log plane. 
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Figure 3.2: the first six space structure functions Sq(r) estimated on 41 radar 
images at 30 minutes interval from 19:50 GMT - 6th of October 1998 to 15:50 
GMT - 7th of October 1998. The rainfall intensity is average on 10 minutes. 
The space scales range from 0.5 km to 128 km. The scaling of structure 
functions is highlighted by the log-log least squares regressions. 
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Figure 3.3: the first six structure functions Sq(r) estimated on one SSM/I field – 
extracted SSM/I image- corresponding hour 5:33 GMT - 7th of October 1998. 
The space scales range from 25 km to 800 km. The scaling of structure 
functions is highlighted by the log-log least squares regressions. 
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Figure 3.4: comparison between the structure functions Sq(r) of the fourth 
moment, estimated on 41 radar images and on the total SSM/I field image. The 
total SSM/I field is contemporary the 21th radar image. The scaling of structure 
functions is clearly similar: the range of space scale is from 0.5 km to 1600 km. 

 
The slopes of the structure functions, obtained for the radar and SSM/I, are 

very similar therefore the multifractal exponents z(q) can be considered unique 
for scale ranging from 0.5 km to 1600 km, as shown by Figure 3.4 where the 
fourth-order structure functions of radar and SSM/I data are compared. 

Multifractal exponents z(q) are estimated by linear regression of structure 
function Sq(l) versus l in the log-log plane for the two different sensors and are 
presented in Figure 3.5.  



In the same figure are plotted also the multifractal exponents of rainfall 
spatial fields at duration of 15 minutes and 24 hours, based on the radar 
observations during the GATE 1 campaign (GARP, Global Atmospheric 
Research Program, Atlantic Tropical Experiment). A more detailed discussion 
on results of the multifractal analysis of GATE rainfall fields in space can be 
found in Deidda, 1999a.  

 

Comparison ofζζζζ values derived from radar, SSMI
 and GATE I images

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7
moment q

ζζζζ

measured SSMI

measured (1 radar image)

average on radar measures

GATE analysis at 15 min

GATE analysis at 24 hours

 
Figure 3.5: results are compared. Exponents z(q) evaluated from the SSM/I 
field image (squares), the contemporary radar image (black dots) and 41 radar 
images (wild dots) show relevant agreement among them. Results are also 
compared with the multifractal exponents estimated from GATE1 datasets for 
two durations: 15-minute and 24-hour. 

 

Sample multifractal exponents (from q=2 to 6) are then used to estimate the 
two log-Poisson parameters c and b of the model by solving the minimization 
problem (9). Results for the two sensors are similar and have shown that the b 
parameter can be considered constant for all the analyzed fields and equal to its 
mean values b=0.5 independently of the amount of rainfall. 

The minimization problem (9) was solved again, but keeping constant the b 
parameter, fixed at its mean value 0.5. The new estimate of the c parameter for 
both radar and SSM/I data are plotted versus the spatial average of rainfall 
intensity in Figure 3.6, where a decreasing trend with increasing mean rainfall 
intensity is apparent. 
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Figure 3.6: log-Poisson coefficients c, keeping b=0.5 constant, versus rainfall 
spatial average intensity for radar values, total SSM/I field and extracted SSM/I 
field. Continuous line represents the best fit. 

 
3.2 SPACE-TIME ANALYSIS 

The space-time analysis requires to make the time variable dimensionally 
homogeneous to space variables. This homogeneity can be pursued by rescaling 
the time dimension with a velocity U, so that rainfall can be regarded as a three-
dimensional process in the Eulerian coordinate system frozen in time, where 
two coordinates are for space and the third coordinate is the rescaled time (Ut). 
This is possible assuming Taylor hypothesis of “frozen turbulence” [Taylor, 
1938] to characterize the space-time statistical properties of rainfall as being a 
three-dimensional homogeneous and isotropic process where a measure on scale 
l along the (rescaled) time axis is the trace of rainfall on a time t=l/U, but at 
fixed location. 

The advecting velocity U is, in this paper, estimated using a cloud tracking 
techniques on a sequence of half-hourly Meteosat images in the IR band for the 
event of October 1998. The entity, which is tracked, is the observed coldest top 
of the cloud system, not an individual cloud [Bolla et al., 1996] 

The average estimated advection velocity of the storm is 13 m/s. 
Structure functions (5) of radar images are computed on 7 selected rainfall 

sequences for scales l ranging from 8 km to 128 km and time scales ranging 
from 10 minutes to about 3 hours. 

Multifractal exponents z(q) of equation (8) are estimated and presented in 
Figure 3.7. In the same figure are plotted also the multifractal exponents of 
rainfall space-time fields for one selected precipitation sequence of GATE 1, 
characterized by an average rain rate of 2.7 mm/h.  
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Figure 3.7: values of the exponents z(q) of seven rainfall sequences for spatial 
scales l ranging from 8 km to 128 km and time scales ranging from 10 minutes 
to 3 hours are compared with the averages of the multifractal exponents 
estimated from GATE1 datasets. 

 

Sample multifractal exponents (from q=2 to 6) are then used to estimate the 
two log-Poisson parameters c and b of the model by solving the minimization 
problem (9). Results have shown again a small variability in the estimate of the 
b parameter for each of the seven sequences of radar rainfall fields. Thus new 
values for the c parameter are estimated by keeping b = constant and equal to its 
mean value 0.5. Results are plotted in Figure 3.8 versus the mean rainfall rate of 
each sequence. The Figure shows a similar results to that found in the space 
analysis presented in previous section. Again the dependence of the c parameter 
on the mean rainfall intensity can observed. 
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Figure 3.8: log-Poisson coefficients c, keeping b=0.5 constant, versus rainfall 
average intensity for radar datasets in space and for seven rainfall sequences in 
space-time. Continuous line represents the best fit exponent regression for radar 
datasets in space. 



4 Conclusions 
A multifractal analysis of rainfall fields derived from different sensors (the 

Fossalon radar and the SSM/I) is presented. Results of these analysis have 
shown that both in space and in space-time domain rainfall fields are 
characterized by a multifractal structure. 

In the space analysis, although the spatial resolution of the radar and SSM/I 
sensors is different, the slopes of the structure functions are very similar 
suggesting a possible unique multifractal law for the entire span of scales 
covered by the two sensors. 

As seen from the analysis of  the GATE rainfall fields for the 2D and 3D 
cases there is a dependence of the c parameter from the average field rainfall 
intensity while the b parameter does not depend from rainfall intensity. 

This result states that the large scale rainfall forces the smaller scale 
statistical properties of precipitation. 

In an operational flood forecasting chain it is recommendable to introduce a 
downscaling tool that is able to share out the large-scale amounts of rainfall 
predicted by meteorological models down to the smaller catchment’s scales. 
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